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Abstract—A Taylor-like polycrystal model is adopted here to investigate the plastic behavior of
body centered cubic (b.c.c.) sheet metals under plane-strain compression and the subsequent in-
plane biaxial stretching conditions. The {111 pencil glide system is chosen for the slip mechanism
for b.c.c. sheet metals. The {110} (111} and {112} {111} slip systems are also considered. Plane-
strain compression is used to simulate the cold rolling processes of a low-carbon steel sheet. Based
on the polycrystal model, pole figures for the sheet metal after plane-strain compression are obtained
and compared with the corresponding experimental results. Also, the simulated plane-strain stress—
strain relations are compared with the corresponding experimental results. For the sheet metal
subjected to the subsequent in-plane biaxial stretching and shear, plastic potential surfaces are
determined at a given small amount of plastic work. With the assumption of the equivalence of the
plastic potential and the yield function with normality flow. the yield surfaces based on the simu-
lations for the sheet metal are compared with those based on several phenomenological planar
anisotropic yield criteria. The effects of the slip system and the magnitude of plastic work on the
shape and size of the yield surfaces are shown. The plastic anisotropy of the sheet metal is investigated
in terms of the uniaxial yield stresses in different planar orientations and the corresponding values
of the anisotropy parameter R, defined as the ratio of the width plastic strain rate to the through-
thickness plastic strain rate under in-plane uniaxial tensile loading. The uniaxial yield stresses and
the values of R at different planar orientations from the polycrystal model can be fitted well by a
yield function recently proposed by Barlat er a/. (1997b). « 1998 Elsevier Science Ltd. All rights
reserved.

1. INTRODUCTION

Sheet metals often display significant plastic anisotropy after manufacturing processes such
as cold or hot rolling. These sheet metals usually exhibit not only normal anisotropy but
also planar anisotropy. For metals, the primary source of plastic anisotropy up to mod-
erately large strains comes from the texture or the preferred crystallographic orientations
of the grains. The plastic anisotropic properties of sheet metals have generally been inves-
tigated by two approaches. The first one is to develop various macroscopic yield functions
from a phenomenological viewpoint. The second approach is to develop polycrystal models
based on the constitutive behavior of crystalline slip in single crystals.
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Many phenomenological yield criteria were proposed in the past to account for plastic
anisotropy. Hill’s quadratic yield criterion (1948) has been widely used. In recent years,
non-quadratic yield criteria have received much attention (for example, see Lee et al.,
1996). An excellent review on plastic anisotropy can be found in Hosford (1996). However,
neither Hill’s quadratic yield criterion (1948) nor Hosford’s non-quadratic yield criterion
(1979) can encompass the so-called anomalous behavior of some metals. Hill (1979) modi-
fied his quadratic criterion to encompass some observed anomalous behaviors. However,
Hill’s new criteria are constrained by the requirement that the principal stress axes and the
anisotropic symmetry axes be in the same directions. These criteria cannot be used to
describe any state involving shear stresses with respect to these axes. Gotoh (1977) suggested
a fourth-order polynomial criterion which does not have the limitation mentioned above.
However, the yield criterion contains nine undetermined constants even under plane stress
conditions and is therefore too complicated for use in practice.

Barlat and Lian (1989) and Barlat e a/. (1991) proposed a tricomponent and a six-
component yield criterion, respectively. The shapes of the yield surfaces based on these
yield criteria agree well with those of the upper-bound solutions based on the polycrystal
model of Taylor (1938) and Bishop and Hill (1951a, b) using the texture data for aluminum
alloys. This is especially seen near the equal biaxial loading direction where the yield
surfaces of the criteria with high values of the exponents lead to some rounded vertices
similar to the experimental results. Recently, Barlat er a/. (1997a, b) modified the six-
component yield criterion (Barlat ez a/., 1991) to improve the prediction of the yield surfaces
when compared with experimental results.

Hill (1990) developed an improved plane-stress yield criterion for orthotropic sheet
metals. The criterion can be used to account for the orientation dependence when the
orthotropy axes and the principal stress directions do not coincide with each other. Lin and
Ding (1996) modified Hill’s yield criterion (1990) without imposing additional mathematical
complexities. Lin and Ding (1996) showed that the yield surface based on the modified
Hill’s yield criterion becomes closer to the experimental results. Hill (1993) also proposed
a user-friendly yield criterion for orthotropic sheet metals. Included in this criterion is a
particular pair of cubic terms into his original quadratic yield criterion (1948) to describe
the yield stress and the anisotropy parameter R in the rolling and transverse directions as
well as the equal biaxial yield stress. Here, the anisotropy parameter R is defined as the
ratio of the width plastic strain rate to the through-thickness plastic strain rate under in-
plane uniaxial tensile loading. One major concern of all the yield criteria reviewed above is
that the evolution of texture under non-proportional loading conditions cannot easily be
accounted for.

From a microscopic viewpoint, slip in a certain preferred direction on a certain
preferred plane is the main mechanism of plastic deformation at low homologous tempera-
ture. If the constitutive behavior of each grain based on crystalline slip is available, then
the transition from the microscopic response of an individual grain to the macroscopic
response of the aggregate can be obtained via some averaging schemes. The advantage of
this approach is that the constitutive behavior can be simulated under any loading path
once the constitutive parameters of slip processes and the initial distribution of grain
orientations of a workpiece are known. The initial texture of the workpiece can be obtained
from X-ray diffraction analyses or by computational simulations of manufacturing
processes. However, in this approach, a substantial amount of computational time is still
needed for even a workpiece of simple geometry under simple loading conditions such as
uniaxial tension or compression.

For f.c.c. aluminum alloys, recent studies on yield surfaces can be found, for example,
in Asaro and Needleman (1985), Lin and Ding (1996), Yang and Bacroix (1996) and Barlat
et al. (1997a, b). For b.c.c. metals, studies on plastic behavior and texture can be found,
for example, in Gilormini (1989) and Ceccaldi et al. (1994). For b.c.c. metals, Taylor (1955)
suggested the (111) pencil glide system such that slip can occur on any plane associated
with any of the four (111} slip directions. Hutchinson (1964) approximated the pencil glide
by assuming slip on any of a large but finite number of planes containing the (111> slip
directions. Examining all possible independent combinations of five such slip systems,
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Hutchinson selected the one having the minimum plastic work. He used this procedure to
calculate the yield surface for a randomly oriented polycrystal. Logan and Hosford (1980)
investigated the yield surfaces for several rotationally symmetrical textured sheet metals
based on an upper-bound model and the {111} pencil glide system.

As computational simulations of sheet forming processes become necessary for fast
product development, more accurate yield criteria and constitutive models are needed. In
fact, finite element simulations of forming processes based on the polycrystal model of Asaro
and Needleman (1985) have been performed by Mathur and Dawson (1989), Kalidindi et
al. (1992), Becker (1993), Baudoin et al. (1994) and Baudoin ez al. (1996). However, the
computational time is prohibitively high for these simulations. Although there have been
many experimental and analytical studies performed on f.c.c. metals (for example, see
Barlat et al., 1997a, b), there is a lack of a thorough experimental and analytical study for
b.c.c. metals. Therefore, in this study, we examine the plastic behavior of b.c.c. low-carbon
steels.

It should be noted that the yield surface, determined at a given amount of plastic work,
for any loading paths that cause substantial texture change, is not the yield surface of the
given texture. Asaro and Needleman (1985) determined their reference yield surfaces at the
Mises effective strains of 0.2%, 0.1% and 0.05% whereas Lin and Ding (1996) determined
their yield surfaces at the Mises effective strain of 0.2%. Barlat er al. (1997a) determined
their yield surfaces at the plastic work of approximately a plastic strain of 10%. In this
work, we determine the reference yield surfaces at small amounts of plastic work equivalent
to those of the uniaxial tensile strain of 0.2% and 0.02% in the rolling direction to
understand the relations between the yield (or work) surfaces and the phenomenological
yield surfaces for b.c.c. metals. In addition, we understand that for f.c.c. metals, the texture
data were used to obtain upper-bound solutions which, in general, agree well with the yield
criterion (Barlat and Lian, 1989). However, the deformation history or hardening effect on
plastic behavior under non-proportional loading conditions cannot be accounted for by
upper-bound analyses. Therefore, in this work, we concentrate on this deformation history
and hardening effects on the plastic behavior of b.c.c. metals.

The outline of this paper is as follows. First, a Taylor-like polycrystal model of Asaro
and Needleman (1985) is briefly reviewed for convenient presentation of our implemen-
tation of different slip systems for b.c.c. metals into their polycrystal model. Then, the
deformation kinematics of single crystals and the constitutive relation for the nominal stress
rate and the deformation gradient rate of single crystals as well as the aggregate are
reviewed. In Section 3, the computational procedures of the polycrystal model are briefly
summarized. In Section 4, both the stress-strain response and the crystallographic texture
of a low-carbon steel sheet metal based on the polycrystal model under plane-strain com-
pressive loading conditions are obtained and compared with those of the corresponding
experiments (Friedman et af., 1997). Based on the polycrystal model with the <111 pencil
glide system as well as two other possible slip systems for b.c.c. metals, macroscopic yield
(or work) surfaces projected on the in-plane normal stress plane for both initially isotropic
and textured sheet metals are obtained. The yield surfaces based on the polycrystal model
are compared with those of several available phenomenological anisotropic yield criteria.
The plastic anisotropy of the sheet metal subjected to the subsequent in-plane loading is
investigated by the uniaxial yield stresses and the corresponding anisotropy parameter R
at different planar orientations. Finally, some conclusions are made.

2. A POLYCRYSTAL MODEL

Among various polycrystal models, we adopt a Taylor-like model developed by Asaro
and Needleman (1985) for polycrystals subjected to arbitrarily large strains. The fun-
damental assumption of their model is exactly the same as that of the well-known Taylor
model with the strain field in each grain being assumed to be homogeneous and the same
as that of the aggregate. Therefore, compatibility is satisfied and equilibrium holds in each
grain. However, equilibrium may be violated between grains. The mechanism of the plastic
deformation considered here is the crystalline slips in certain preferred directions on certain



5208 K.-C. Liao et al.

preferred planes. Twinning, cross slip or grain boundary sliding are excluded. Neither
Bauschinger effect nor temperature effect is considered here. Each grain in the aggregate is
assumed to have the same volume fraction and maintain cubical symmetry during plastic
deformation.

2.1. Kinematics of crystalline deformation

The deformation characteristics of each grain follow the kinematic formulation for
single crystals as described in Asaro and Rice (1977) and Asaro and Needleman (1985).
The material is first assumed to flow through the crystal lattice due to plastic shearing
followed by elastic deformation and rigid body rotation of the lattice. For simplicity, the
slip process of only one slip system is schematically plotted in Fig. 1. In the figure, s
stands for the unit vector in the slip direction lying on the slip plane and m* stands for
the unit normal vector perpendicular to the corresponding slip plane in the undeformed
configuration. Here a superscript o indicates the ath slip system. In general, the deformation
gradient of a single crystal, F, can be multiplicatively decomposed (Lee, 1969) in the form
of

F=F*F, (1)
where F? includes the plastic shearing on the slip planes inducing no change of vectors s
and m™ where F* deals with the elastic distortion and rigid body rotation of the crystal
lattice.

For the deformed lattice, the slip direction vector and the slip plane normal vector
corresponding to the ath slip system become

gk — F*.g® (2)

m¥® = m® . F*—lq 3)

Fig. 1. Representation of deformation of a single crystal under a single slip.
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where (*) ' represents the inverse of (+). Here, m*'” is obtained by the cross product of two
vectors lying on the «th slip plane.
The spatial gradient of the velocity is defined as

FF'=D+0, 4)

where the deformation rate D and the spin rate € are the symmetric and the anti-symmetric
part of F+F ~', respectively. Also, D and € can be composed into the sum of the cor-
responding rates based on the plastic shearing and those based on the crystal lattice
deformation as

D =D*+D* &)
Q=05+, (6)

The plastic part of the spatial gradient of the velocity arisen from the deformed slip systems
(s*™, m*™) can be expressed as

F-F'—F*F+' =D+ = Z)'"“’S*(“)m*‘“’, %

where 7 represents the shear strain rate on the ath slip system, and D’ and € are the
symmetric and the anti-symmetric part of the right hand side of eqn (7), respectively.

2.2. Constitutive relation

The constitutive response of a single crystal is established by an assumption that the
second Piola—Kirchhoff stress T* for the lattice distortion can be derived from the lattice
strain energy per unit reference volume, ¢, and the Lagrangian strain of the lattice, E*, as

_ %

* =
T = (8)

The rate of the lattice-based second Piola—Kirchhoff stress can be expressed as

o 20

=0E*(’E—; E* = 9. E* (9)

where & is the clastic moduli for a cubically symmetric crystal. When the orthogonal
coordinate axes are chosen to be coincided with the cubic axes of a grain, three independent
nonzero components of the elastic moduli are

2. = C,, (nosummation)
Dy = C,, fori#j (nosummation)

Dy = Dy = Cqq fori#j (nosummation), (10)

where C,,, C,, and C,, are the elastic material constants. Here the Roman subscripts have
arange of 1 to 3.

The Kirchhoff stress T can be related to the lattice-based second Piola-Kirchhoff stress
T* as
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1= F*-T*-F*7 (11)

where ()7 represents the transpose of (+). Then eqns (9) and (11) are used to derive the rate
of the Kirchhoff stress as

t=F*«(Z B*) - F¥ 4 F* F*~ Lo g pg F* T F*7, (12)

where ()~ 7 represents the inverse transpose. The Lagrangian strain rate E* of the lattice
can be expressed in terms of F* and D* as

fi* — F*T D%« F*. (13)
Equation (12) can be rewritten as
t=Y:D*+Q* 1—1:Q* (14
The index form of the fourth rank tensor ¥ in the above equation is derived as
Lo = FEFSFE D v+ 50+ 84T i + T 5 + 146 ). (15)

where ¢, represents the Kronecker delta.

The nominal stress n referred to the reference (undeformed) configuration can be
related to the Kirchhoff stress 7 referred to the current (deformed) configuration with the
relation

t=F-'n (16)
The nominal stress rate it can then be obtained as
n=F"'t+F "1 (17)

Finally, from eqns (5), (6), (14), and (17), the constitutive relation for the nominal stress
rate and the conjugate deformation gradient rate can be formulated concisely as

n=K:F—B, (18)

where K and B are determined by following the derivation in Asaro and Needleman (1985).

Plastic deformation due to crystalline slips in metals is inherently strain rate sensitive.
It should be noted that the strain rate sensitivity can significantly influence strain localization
in sheet metal operations ( for example, see Ghosh and Hecker, 1975; Wang and Wenner,
1978). For rate sensitive materials, all slip systems are assumed to be activated when the
resolved shear stresses on the corresponding slip planes are not identically zero. Therefore,
a lack of uniqueness for determination of the operative slip systems corresponding to an
imposed deformation for rate insensitive materials is alleviated with the consideration of
strain rate sensitivity (see Pan and Rice, 1983).

A power-law relation is used to relate the resolved shear-stress 1 (=m*™® - 7-s*®) to
the shear strain rate y® of the ath slip system by ( for example, see Pan and Rice, 1983)

(o) (/M-
5O 4@ L (19)
4 (@) >

where ™ is the reference strain rate on the «th slip system and M represents the strain rate
sensitivity of crystalline slips. The slip system hardness, g, is a function of the sum of the

Tlx)

7%

g
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shear strains of all slip systems, y. For simplicity, the magnitudes of ¢ and g are assumed
to be the same for all slip systems. The evolution of the slip system hardness is given by

g = Tl , 20)
8

where h,5, the components of the hardening matrix h, define the relationship between the
hardening rate of the ath slip system and that of the fith slip system.

A simple hardening matrix, similar to that adopted in Asaro and Needleman (1985),
is adopted here:

h,g = quph'®, (21)

where g, the components of the matrix q, are related to the self hardening rate on the
primary slip system and the latent hardening rate on the secondary slip system of a crystal,
and 4 is a function of g®, as in Bronkhorst ef al. (1992)

(BI\r
WP = b, (1 - g—-) . (22)

i
g

Here 4y, r, and g¥ are the slip system hardening parameters which are assumed to be
constant for all slip systems. The saturated slip hardness g*' is assumed to be a function of
temperature. Nevertheless, the change of g is not a major consideration at low tempera-
ture. All parameters above can be obtained by fitting the stress—strain curve of a uniaxial
tensile test.

Low-carbon steels have body centered cubic crystal structures at low homologous
temperature. For example, if only the twelve {110} <111} slip systems are considered for
b.c.c. metals, there are six different slip planes with two slip directions on each plane.
Therefore, the matrix q defined in eqn (21) can be specified as

G ¢gH ¢H ¢gH ¢gH gH
9H G qH gH ¢H g¢H
9H ¢H G ¢H ¢H g¢H
qg= , (23)
oH gH gH G 4¢H gH
¢H ¢H ¢gH qgH G gH

gH ¢H ¢gH gH ¢gH G

with

1 g
G= [ q‘j’ (24)
g. 1

H= b )
_[1 1} (25)

where g, represents the ratio of latent hardening rate to self hardening rate for coplanar
slip systems and g, represents the ratio of latent hardening rate to self hardening rate for
noncoplanar slip systems. Here, ¢. and ¢, are assumed to be constant throughout the
deformation history. The value of g, is approximately 1.2 whereas that of g, ranges approxi-
mately from 1.2 to 1.4 for an iron single crystal (Keh, 1965 ; Nakada and Keh, 1966). Note

and
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that Taylor’s isotropic hardening (Taylor and Elam, 1923) is recovered when the values of
g. and g, are equal to unity. When the value of g, is larger than that of g., the form of q
adopted in eqn (23) implies that the hardening rates of the noncoplanar slip systems are
larger than those of the coplanar ones.

For the {112} {111} slip system, there are twelve different slip planes with one slip
direction on each plane. Therefore, q in eqn (23) becomes a 12 x 12 matrix where G in eqn
(24) and H in eqn (25) degenerate to a scalar of unity. Note that since there is only one slip
direction on each slip plane, the concept of coplanar latent hardening is no longer applicable.
However, noncoplanar latent hardening in terms of g, is still applicable here.

For the pencil glide system, which is our main interest, we have a total of four slip
directions. We search for the slip plane, even a noncrystallographic one, to give the
maximum value of the resolved shear stress for a given slip direction. In order to make a
tractable simulation for hardening, we assume the Taylor hardening for slips occur for a
given {111 direction and the latent hardening constant g, = 1.4 for slips along the other
{111 directions.

By using a linear interpolation scheme (for example, see Peirce er al., 1984), the
increment of the shear strain of the ath slip system at time ¢ can be expressed as

Ay(oz) — [(1 _9),)-)(00(1«) + {9)}(’)(I+AZ)]AI‘, (26)

where 6 is an interpolation parameter specified from 0 to 1. Furthermore, since the shear
strain rate y defined in eqn (19) is a function of the resolved shear stress t and the slip
system hardness g, the shear strain rate at time 7+ At can be approximately obtained by
using a Taylor series expansion as

O oy
FOU+A) =5 ()+ == AP + —— Ag®, (27
8,[11) ag(a)

As in Peirce et al. (1982), the final form of the increment of the shear strain is given by

Y NyAy? =9 (n+ Q¥ : D)As, (28)
B

where N,; and Q® are listed in Asaro and Needleman (1985).

Once the constitutive behavior of an individual grain is known, the transition from the
micro-response of the individual grain to the macro-response of the aggregate follows the
averaging scheme developed by Hill (1972).

2.3. Various slip systems

For b.c.c. crystals, three possible slip systems, namely, {111 pencil glide, {110} <111},
and {112} (111}, are assumed. Based on the concept of the {111} pencil glide, any
planes, even non-crystallographic ones, containing {111 slip directions with the maximized
resolved shear stress are considered to be the slip planes. Hence, there are four slip planes
associated with the {111) pencil glide system. For the {110} <111 slip system there are
six slip planes with two slip directions on each plane, whereas for the {112} <111} slip
system, there are twelve slip planes with one slip direction on each plane. Numerical results
based on the three slip systems in the polycrystal model are presented in Section 4.

2.4. Crystallographic texture

Among several factors inducing plastic anisotropy in metals, such as the orientation,
arrangement, and shape of the grains, the orientation of the grains dominates the anisotropic
phenomenon up to moderately large strains. Three Euler angles relating the crystal coor-
dinates of each grain to the material coordinates of the aggregate are adopted to represent
the crystallographic orientations of each grain. There are three most widely used rep-
resentations of the Euler angles. We adopt the one with the sequence of rotation of the axes
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Fig. 2. Representation of the Euler angles.

shown in Fig. 2 where ¢,, ® and ¢, are the Euler angles and X and x represent the crystal
(local) coordinates and the material (global) coordinates, respectively. The sequence of
rotation is explained in the following.

(1) A rotation of ¢, angle about the x; axis.
(2) A rotation of @ angle about the rotated x, axis.
(3) Finally a rotation of ¢, angle about the rotated x; axis.

Here ¢, ranges between 0 and 27, ® ranges between 0 and 7 and ¢, ranges between 0 and
2n. The relationships between the responses of the crystal coordinates and those of the
material coordinates can be obtained according to the transformation law

x=¥X, (29)

where the transformation matrix W corresponding to this representation of the Euler angles
is defined as

COS () COS @, —Sin @, sin @, cos® —cos ¢, sin @, —sin @, cos ¢, cos P
W = [sin @, cos @, + cos @, sin @, cos® —sin @, sin ¢, +cos @, cos ¢, cos D
sin ¢, sin® cos . sin®
sin @, sin®
—cos@;sin®|. (30)

cos®

We select a sufficiently large number of grains to simulate uniformly distributed crystal
orientations for isotropic materials. The initial Euler angles of each grain are obtained via
a random number generator. After imposing arbitrary loading paths on initially isotropic
materials, the crystallographic texture of the corresponding pre-strained materials can be
simulated by updating the Euler angles of each grain. It is noteworthy that the crys-
tallographic texture can also be characterized by using the crystallographic orientation
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distribution function (CODF) (for example, see Bunge, 1982) constructed from X-ray
diffraction data.

2.5. Boundary conditions

Typically there are two types of boundary conditions for the Taylor-type polycrystal
models: all-displacement and displacement-traction (mixed) boundary conditions. As
explained in Asaro and Needleman (1985), due to the available rate constitutive relation
for the Taylor-like polycrystal model, it is natural to simulate homogeneous boundary
value problems based on boundary conditions of both displacement and traction for
polycrystals rather than to make assumptions about the unspecified components of the
strain rate. In order to benchmark the influences of the selected boundary conditions, the
stress—strain response of an isotropic copper (face centered cubic (f.c.c.) metal) under
uniaxial tensile loading based on these two boundary conditions is plotted in Fig. 3. In the
figure, the stress—strain relation from Bronkhorst ez al. (1992) based on the all-displacement
boundary conditions is also included for comparison. It should be noted that the stress—-
strain relations based on the all-displacement boundary conditions from Bronkhorst er al.
(1992) and from the current study are in good agreement although the detailed formulations
are slightly different. The stress—strain curve based on the mixed boundary conditions is
slightly lower than that based on the all-displacement boundary conditions. In general, the
stress—strain relations based on these two boundary conditions are in good agreement as
shown.

Implementation of the mixed boundary conditions into the polycrystal model is now
elaborated under both plane-strain compressive and proportional in-plane tensile loading
conditions. The coordinate system and the geometry of the material are shown in Fig. 4
where x,, X, and x; indicate the rolling, transverse and compressive direction, respectively.
Plane-strain compression requires that the normal strain rate in the transverse (x,) direction
be equal to zero. Therefore, the deformation gradient F5, is equal to 1. Here, () represents
the corresponding quantity of the aggregate. The incremental normal strain rate is the

400

350

300

250 r

200

150

100

o All displacement B.C.
+ Mixed B.C.
— All-displacement B.C. (Bronkhorst et al.)

0 . t . ! N 1 . 1 s
0.0 0.1 0.2 0.3 0.4 0.5

Fig. 3. The uniaxial tensile stress—strain relations from the simulations based on the all-displacement
boundary conditions, the displacement-traction boundary conditions and from Bronkhorst et al.
(1992) for copper.
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Fig. 4. The coordinate system of the sheet metal.

compressive (x;) direction is assumed to be prescribed. The hypothesis of the compressive
conditions is that lines of the material in the sheet plane (x,—x, plane) remain consistently
in that plane and the rigid body rotation about the loading axis is constrained as well.
Hence

-

‘e, = F e

"€ :F22e21 31

e

where e, and e, are the unit vectors in the x, and x, directions, respectively. Equation (31)
leads to

F-21=0, F3| =0, F—I2ZOs F32:O. (32)
The nominal stress boundary conditions corresponding to plane-strain compression are

7,, =0 onx,; =constant
fiy; = fi;; =0  on X; = constant. (33)
Under the subsequent proportional in-plane biaxial tensile loading, the in-plane (x,—
X, plane) stresses are considered to be nonzeros. We assume that the incremental normal

strain in the rolling (x|) direction is prescribed. The nominal stress rate ratios, #,,/#%,, and
Ai/M,,, are taken as constants. The remaining boundary conditions are

F;12=F;21, ];:31 =0, 1“-:52:0 (34)
ﬁ}l =0, ﬁaz =0, ﬁ33 =0 (35)
2.6. Material properties

For iron single crystals, three cubic elastic constants in eqn (10) can be found in the
handbook (Smithells Metals Reference Book, 1983) as



S216 K.-C. Liao et al.

C]] = 237 GPa
C,, = 141 GPa
C,, = 116 GPa. (36)

The microscopic strain rate sensitivity M for single crystals in eqn (19) is assumed to be
0.012 which is the macroscopic strain rate sensitivity of the aggregates (Ghosh and Hecker,
1975). The values of ¢, and ¢, in eqn (23) are set to 1.2 and 1.4 (Nakada and Keh, 1966),
respectively.

A parallel experimental investigation of the texture of low-carbon hot-rolled steels was
conducted by Friedman ez al. (1997). In this study, uniaxial tensile data were collected up
to a maximum tensile strain of approximately 0.25. The power-law relation & = 647.9(z)" "’
is used to fit the experimental data. The power-law relation is then used to guide the stress—
strain behavior at large strains. The experimental stress—strain curve and the power-law fit
are shown in Fig. 5. It should be noted that the Liiders strain exhibited in the test cannot
be fitted well by the power-law stress—strain relation.

Since we anticipate large plastic strain under plane-strain compressive loading and the
subsequent in-plane loading, the stress—strain relation based on the polycrystal model is
fitted to the uniaxial tensile power-law relation at large strains by adjusting the slip hard-
ening parameters A, r, and g as well as the initial values of g in the polycrystal model.
After trial-and-error, the simulated stress—strain curve for 400 randomly oriented grains
based on the {111 pencil glide system is shown in Fig. 5 and the corresponding parameters
are tabulated in Table 1. The parameters for the simulated stress—strain curve based on the
other two slip systems are also listed in Table 1. Note that the magnitudes of these constants
cannot be uniquely determined since there are four adjustable parameters in eqn (22).

Note that the effects of the number of grains for the polycrystal model on the uniaxial
tensile stress—strain relations are shown in Fig. 6. The results of the simulations indicate
that the stress—strain curve based on 400 grains nearly coincides with that based on 800
grains. Therefore, 400 grains are used in our simulations for plane-strain compression and
the subsequent in-plane biaxial loading to save computational time.
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600 —~ —
_ | -
500 —~

Simulation

300

o(MPa)

200 ¥~

100§  x Experiment
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0 | | I ] I ] ! ] L1
0 0.2 0.4 0.6 0.8 1
€
Fig. 5. The uniaxial tensile stress—strain relations from the experiment and from the simulations

based on the (111 pencil glide system for a low-carbon steel. The fitted power-law relation is also
shown.
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Table 1. The hardening parameters used to fit the uniaxial tensile stress—strain relation based on the {111} pencil
glide, {110} <111}, and {112} {111 slip systems

hy (MPa) ¢ (MPa) r g% (MPa)
{111 pencil glide 350 450 430 100
{110} <1113 330 365 415 100
{112} <111 330 295 4.15 100
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600 | Power-law

500
400 Grains

400
<
% 200 Grains
© 300
h
200
100 F
{111) Pencil Glide
0 A 1 " ] M 1 " 1 A
0 0.2 0.4 0.8 0.8 1
£

Fig. 6. The uniaxial tensile stress—strain relations from the simulations based on randomly oriented
200, 400, and 800 grains for the low-carbon steel.

3. COMPUTATIONAL PROCEDURE

Sheet rolling processes of an initially isotropic material are simulated with plane-strain
compression. Pole figures are used to represent the crystallographic textures of the sheet
metal at various compressive thickness strains after unloading. The yield surfaces of the
compressed sheet metal are then determined under the subsequent proportional in-plane
loading. Our computational procedures are summarized as follows.

The deformation gradient F of the aggregate should be a second order identity tensor
before imposing any deformation on the initially isotropic aggregate. The isotropic aggre-
gate consists of many (400) randomly oriented grains. When Taylor’s assumption is
adopted, the deformation gradient of each grain (single crystal) is the same as that of the
aggregate. For each grain, three Euler angles, ¢,, @, and ¢,, as well as the corresponding
transformation matrix ¥ defined in eqn (30) can be obtained. The elastic modulus 2, the
slip direction vector s’ and the slip plane normal vector m* of the «th slip system of each
grain based on the crystal coordinates (the local coordinates) are transformed to the
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corresponding quantities based on the material coordinates (the global coordinates) by
using the transformation relation as

(gr'jkl)global = lPir\‘Il_/'.s-lPkiLPIu(gmm)local (37)
(S(u))global = ‘]’ '(S(a))local (38)
(m(a))global = ‘P '(m(a))locah (39)

Here (*)goba and (+)i,ca TEPresent the corresponding quantities based on the global coor-
dinates and local coordinates, respectively. The matrices K and B of each grain defined in
eqn (18) and the shear strain rate of the ath slip system, 7, defined in eqn (19) can then
be obtained. All the calculations above are applied to each grain.

Hill’s averaging theorem is followed with the assumptions of uniform deformation
throughout the aggregate and the same volume fraction for each grain. The K and B of the
aggregate can be obtained using a simple arithmetic averaging scheme for the corresponding
quantities of grains

_ 1 Num

K= K 40
Num ‘,; (40)

- 1 Num

B=—— 41
Num & (41)

Here, “Num” represents the total number of grains. The rate of deformation gradient of
aggregate, F, and the rate of deformation of the aggregate, D, at the current time 7 under
plane-strain compression can be obtained based on the mixed boundary conditions as
described early. The increment of the shear strain, Ay, and the increment of the slip
hardness of the ath slip system, Ag®, are obtained via eqns (28) and (20), respectively. The
magnitudes of y®, g, K, and B of each grain at time 7+ Az for the next increment of strain
can also be evaluated. The plastic part of the deformation gradient, F?, at time ¢+ Az can
be obtained from the relation F? «(F?) ~! = X, 7®s®m®_ The deformation gradient F* of a
single crystal based on the lattice at time 7+ Az can then be calculated by

F*=F-(F")"". (42)

The nominal stress rate i of each grain can be obtained by using eqn (18). The nominal
stress rate of the aggregate, i, is obtained by using a simple arithmetic averaging scheme
for the nominal stress rates of each grain, a, as

Num

i = . (43)
1

1
Num £
Finally, the nominal stress of the aggregate, i, at time ¢+ Af can be obtained corresponding
to the prescribed mixed boundary conditions.

Under the subsequent proportional in-plane loading, the boundary conditions need to
be changed and the transformation matrix ¥, the slip systems (s*®, m*®), and the slip
hardness g need to be employed as the initial values for each grain after the elastic
unloading of the plane-strain compression.



B.C.C. strain hardening sheet metals 5219
4. NUMERICAL RESULTS

4.1. Plane-strain compressive tests

Plane-strain compressive tests were performed by Friedman et a/. (1997) on a low-
carbon hot-rolled steel sheet to simulate cold rolling. The mechanical behavior of the steel
and the details of the experiments can be found in Friedman e? a/. (1997). The compressive
stresses, with and without friction correction ( for example, see Hosford and Caddell, 1993),
as functions of the compressive thickness strains obtained from the experiments are shown
in Fig. 7. The compressive stress—strain relations from the simulations, based on the three
chosen slip systems, are also shown in Fig. 7. The stress—strain relation based on the {110}
{111 slip system approaches the experimental results without friction force correction.
However, the simulated stress—strain relations based on the {111 pencil glide system and
the {112} {111} slip system are in good agreement with the experimental results corrected
for friction.

The reason that the (111 pencil glide system gives the lowest stress—strain relation is
possibly due to an increase in freedom for the selection of the slip system. It should be
noted that the material parameters for the different slip systems are obtained by fitting the
uniaxial power-law stress—strain relation at large strains. The differences of the simulated
uniaxial stress—strain relations will carry over to the plane-strain compressive stress—strain
relations. However, the good agreement of the results from the simulations and the exper-
iments shown in Fig. 7 could be regarded as one validation of the present polycrystal model.

4.2, Pole figures of texture sheet metal
The textures of the b.c.c. sheet metal at various compressive thickness strains of 0
(initially isotropic), 0.34 and 0.79, in terms of (200) and (110) pole figures, based on the

700

600 | {110K111)
<
E 500
1]
% 7
[‘E {111) Pencil Glide
) 400
=3
et i
(7]
0 =
e 300 | {112)111)
=¥
=
(@]
(&

200 r

100 - O Experiment

+ Experiment (with Friction Force Correction)
0 N F I 1 L 1 : | I Y 2 1 2 H

0.0 0.1 02 03 04 05 06 07 08
THICKNESS STRAIN

Fig. 7. The plane-strain compressive stress-strain relations from the experiment and from the
simulations based on the {111} pencil glide, {110} (111}, and {112} {111} slip system for a low-
carbon steel.
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(200) Pole Figure

Fig. 8. The (200) pole figures obtained from the simulations based on the (111 pencil glide system
after plane-strain compression with the compressive thickness strain of 0.0 (isotropic), 0.34 and
0.79.

(110) Pole Figure

Fig. 9. The (110) pole figures obtained from the simulations based on the <111 pencil glide system
after plane-strain compression with the compressive thickness strain of 0.0 (isotropic), 0.34 and
0.79.

{111 pencil glide system are shown in Figs 8 and 9 where “RD”’ and “TD” represent the
rolling and transverse directions, respectively. It should be noted that, in general, as-
received sheet metals contain some degree of plastic anisotropy. However, the slight degree
of anisotropy found in the as-received material in the study of Friedman et al. (1997) was
insignificant when compared with the anisotropy induced from the plane-strain compression
at large strains. However, in our simulations, no preferred orientation of grains is assumed
before plane-strain compression.

The top figure of Fig. 8 shows no preferred orientation of grains before plane-strain
compression. The middle figure of Fig. 8 shows that (200) pole figure exhibits a distinct
pattern after plane-strain compression with the compressive thickness strain of 0.34. The
bottom figure of Fig. 8 shows a sharp crystallographic texture after plane-strain compression
with the compressive thickness strain of 0.79. Figure 8 shows that the (200) planes of grains
tend to be parallel to the transverse direction of the rolled sheet at certain preferred angles.
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200 Pole Figure

Fig. 10. The (200) pole figure obtained from the experiment after plane strain compression with the
compressive thickness strains of 0, 0.34 and 0.79.
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Fig. 11. The (110) pole figure obtained from the experiment after plane strain compression with the
compressive thickness strains of 0, 0.34 and 0.79.

Figure 9 shows the texture development in terms of (110) pole figures. The crystallographic
textures are symmetric with respect to the RD and TD as shown in both Figs § and 9.
Experimental (200) and (110) pole figures (contour plots) provided by Friedman et /.
(1997) are shown in Figs 10 and 11, respectively, for the as-received material and the
material after being deformed in plane-strain compression to the compressive strains of
0.34 and 0.79. The pole figures were constructed by using the crystallographic orientation
distribution function (CODF). For both the (200) and (110) pole figures, shown in Figs 10
and 11, there are some initial textures at ¢ = 0 as shown. For the (200) pole figure at
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(112}111)

(200) Pole Figure

Fig. 12. The (200) pole figures obtained from the simulations based on the (111 pencil glide, {110}
<111, and {112} {111 slip systems after plane-strain compression with the compressive thickness
strain of 0.79.

¢ = 0.34, shown in Fig. 10, the texture is not quite the same as that from the polycrystal
model shown in Fig. 8. However, the (200) pole figure at the larger strain of ¢ = 0.79,
shown in Figure 10, agrees well with that in Fig. 8. As shown in Fig. 11, the (110) pole
figures at ¢ = 0.34 and 0.79 agree well with those in Fig. 9. These experimental pole figures
indicate that the texture due to the plane-strain compression becomes dominant at large
strains and tends to agree with those obtained from the polycrystal model. Note that there
are some available experimental pole figures for b.c.c. metals (for example, see Segmiiller
and Wassermann, 1960). These pole figures in Segmiiller and Wassermann (1960) show
similar characteristics to those from our simulations.

The (200) and (110) pole figures from our simulations for plane-strain compression
with the compressive thickness strain of 0.79 based on the three chosen slip systems are
plotted in Figs 12 and 13, respectively. Figure 12 shows a similar pronounced crys-
tallographic texture based on the three slip systems in terms of the (200) pole figures. Figure
13 also shows a similar crystallographic texture based on the three slip systems in terms of
the (110) pole figures. From these pole figures, it is difficult to determine the governing slip
system in the test.

4.3. Macroscopic yield surfaces

As reported by many investigators ( for example, see Hecker, 1976), the definition of
the initial yield stress significantly affects the shape and size of the initial yield surface and
the subsequent yield surface. Several definitions are schematically illustrated in Fig. 14. The
proportional limit, denoted as a point 1 in the figure, is a natural and straightforward way
to determine the initial yield stress since the permanent deformation starts to occur at this
point. Nevertheless, it is not easy to determine the proportional limit point exactly from
the measurement. Generally speaking, the stress at 0.2% offset plastic strain (point 2) is
usually used as the offset yield stress under uniaxial tensile loading. Many researchers prefer
a small but finite (5 to 10 w) plastic strain (point 3) or use back extrapolation at a
given plastic strain (point 4) to determine the initial yield stress under multiaxial loading
conditions (for example, see Hecker, 1976). Under multiaxial loading conditions, the
effective stress—strain relations under various loading conditions are required for adopting
the definitions reviewed above when the usual framework of plasticity theory is followed.
However, the effective strain definition is not available unless the effective stress based on
the yield function is available.
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{112K111)

(110) Pole Figure

Fig. 13. The (110) pole figures obtained from the simulations based on the {111 pencil glide, {110}
{111y, and {112} {111} slip systems after plane-strain compression with the compressive thickness
strain of 0.79.

0.2% £(%)

Fig. 14. Representation of various methods to determine the yield stress.

In this work we determine the yield surfaces for sheet metals subjected to proportional
in-plane loading after plane-strain compression. The yield surface obtained here is based
on the hypotheses of the equivalence of the plastic potential and the yield function with
normality flow. Dillamore et al. (1971) defined the yield surface by plotting successive
surfaces at various levels of plastic work and back extrapolating to zero plastic work. In
our study, the yield stress under uniaxial tensile loading in the rolling direction is first
determined at 0.02% (definition 1 hereafter) or 0.2% (definition II hereafter) offset plastic
strain. The corresponding plastic work can be obtained with the polycrystal model. The
yield surface under proportional in-plane loading is then determined at the plastic work
equal to that at 0.02 or 0.2% offset plastic strain in the rolling direction. In this study, we
concentrate on the yield behavior in the first quadrant of the in-plane normal stress plane,
where both the in-plane normal stresses are positive. The macroscopic yield surfaces from
the simulations for both initially isotropic materials and materials after plane-strain com-
pression are investigated here.
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Four available phenomenological yield criteria, which account for the planar ani-
sotropy of materials, are fitted to the results of the simulations. In 1948, Hill proposed a
quadratic yield criterion (Hill, 1948) for orthotropic materials. This yield criterion has been
widely adopted in spite of its failure to encompass the anomalous behavior of some metals.
When the out-of-plane shear terms are neglected, the Hill quadratic yield criterion is
expressed as

F(022’0'33)2+G(0'33_011)2+H(0'11 —022)2+2Nafz =6, 44)

where the coordinate system follows that shown in Fig. 4. Here, & represents the effective
tensile stress and is considered to be the yield stress under uniaxial tensile {oading in the
rolling direction. The material constants, ¥, G, H and N can be determined based on the
uniaxial yield stresses in the rolling and transverse directions, the yield stress in the equal
biaxial tension direction, and the yield stress under in-plane pure shear.

Based on an upper-bound analysis assuming the {111 pencil glide for rigid-plastic
polycrystals, Hosford suggested a yield criterion (Hosford, 1979; Logan and Hosford,
1980) with the requirement that the principal stress directions coincide with the orthotropic
directions as

Floyy—03:"+Glos; —ay "+ H|o —04,]" = 7, (45)

where the coordinate system follows that shown in Fig. 4 and & is the effective tensile stress
defined previously. The constants F, G and H in the equation can be determined from the
uniaxial yield stresses in the rolling and transverse directions, and the yield stress in equal
biaxial tension direction. After examining several mixed rotationally symmetric textures,
Logan and Hosford (1980) recommended the exponent m equal to 6 for b.c.c. and 8 for
f.c.c. metals.

Hill (1993) added a pair of cubic terms to his quadratic yield criterion (Hill, 1948) to
give the exact values of R in the rolling and transverse directions as specified by the
experiments. This yield criterion is written as

6 ¢0,,0,, G5y 611 +40,3)) 61,0,
1ﬁ|___|1 2, +{(p+q)_(l7 1 +40;;) O -1 (46)
b Go09g o, ) GyTgq

where the coordinate system follows that shown in Fig. 4. Here ¢, and gy, represent the
uniaxial tensile yield stresses in the rolling and transverse directions, respectively, and o,
represents the equal biaxial tensile yield stress. Three constants ¢, p and ¢ can be obtained
from the uniaxial yield stresses and the anisotropy parameters in the rolling and transverse
directions as well as the yield stress in the equal biaxial tension direction.

Finally, Barlat et al. (1997b) proposed a generalized yield criterion, referred to as the
Y1d96 yield criterion. The yield function cannot be expressed in a simple functional form
as those of the three yield criteria discussed above. Therefore we will not repeat the entire
formulation of Barlat et al. (1997b) here. The yield function follows a long list of works
from Hershey (1954), Hosford (1972), Karafillis and Boyce (1993) and Barlat ez a/. (1997a).

4.3.1. {111 pencil glide system Figure 15(a) shows the results of the simulated yield
surface based on the {111) pencil glide system and definition 1 for isotropic low-carbon
steels. For comparison, the corresponding Tresca yield criterion, the von Mises yield
criterion, and the Hosford yield criterion with m = 6 are also plotted in Fig. 15(a). In the
figure, o), represents the stress in the rolling direction and a,, represents the stress in the
transverse direction. The symmetry of the simulated yield surface with respect to equal
biaxial direction is shown whereas the yield stresses in the x; and x, directions are almost
the same. The simulated yield surface lies between the Mises and Tresca yield criteria. Note
that the simulation results obtained in this study are upper-bound solutions. The simulated
yield surface is in good agreement with the yield surface of Hosford with a high exponent
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Fig. 15. The results of the simulated yield surface based on the (111 pencil glide system and (a)

definition 1, (b) definition II and (c) definition I and 1I (normalized yield surface) compared with

those based on the Tresca yield criterion, and von Mises yield criterion, and the Hosford yield
criterion with m = 6 for isotropic sheets.

of m = 6. The simulated yield surface appears to be smooth near the equal biaxial tension
direction in contrast to the vertex of the Tresca yield surface.

Figure 15(b) shows the results of the simulated yield surface based on the {111 pencil
glide system and definition II for isotropic low-carbon steels. Figure 15(c) shows the results
of the simulated yield surfaces based on the {111 pencil glide system and definition I and
definition II normalized by the yield stress in the rolling direction. Figure 15(c) indicates
that the yield surfaces slightly depend on the amount of plastic work for the initially
isotropic steel sheets. Also, the shape of yield surface based on definition I is slightly flatter



5226 K.-C. Liao et al.

LIDEE B

-
N
1

0.5

NORMALIZED STRESS
o
~
&

0.4

0.3 |
r <111> Pencil Glide e
92 " %0.02% Plastic Strain Offset

0.1 L  ©0.2% Plastic Strain Offset -

0 | I I RETE SR PUEE SN R S | PO WP S B R

0 ‘o.llu.2A0.310.4.o.5 06070809 1 1.1 1213 1415
NORMALIZED STRESS

Fig. 15.—Continued.

800~ Region B Hosford (m = 6)
700 et oy _\£
600 Y1d96 (m = 4)
—_ Hill Quadratic
< 500 .
E i X
= o /‘J
o~ o i
© T " Hill Cubic—"}
300 VE
- Iy
200 |- 1
ok .~ <111>Pencil Glide
[ X Simulation Region A
0 2 | 1 | ! | | 1 1 | | 1 | SR |
0 100 200 300 400 500 600 700 800

o,, (MPa)

Fig. 16. The results of the simulated yield surface based on the (111} pencil glide system and

definition I compared with those on the Hill quadratic and cubic yield criteria, the Hosford

yield criterion with m = 6, and the Y1d96 yield criterion with m = 4 for sheets after plane-strain
compression with the compressive thickness strain of 0.79.

than that based on definition I in the region between the equal biaxial tension and the
uniaxial tension.

Figure 16 shows the results of the simulated yield surface based on the {111 pencil
glide system and definition I for steel sheets after plane-strain compression with the com-
pressive thickness strain of 0.79. Note that the directions of the applied in-plane normal
stresses coincide with the in-plane orthotropic directions after plane-strain compression.
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For convenience of presentation, the region between the equal biaxial tension and the
uniaxial tension in the rolling direction is designated as Region A whereas the region
between the equal biaxial tension and the uniaxial tension in the transverse direction as
Region B. The asymmetry of the yield surface with respect to equal biaxial tension direction
indicates the planar anisotropy of the sheet metal. The uniaxial yield stress in the rolling
direction is 552 MPa whereas the uniaxial yield stress in the transverse direction is 584
MPa. Both the yield stresses are much higher than the yield stress of 250 MPa before
plane-strain compression due to strain hardening. The characteristic of anisotropy will be
investigated later by calculating the uniaxial yield stresses, the values of R, and the elastic
moduli at various in-plane orientations.

The yield surfaces based on the four available yield criteria fitted to those based on the
simulations are shown in Fig. 16. The uniaxial yield stresses in the rolling and transverse
directions, and the yield stress under equal biaxial loading from the simulations are used
to obtain the constants of the Hill quadratic and Hosford yield functions. Note that we
take m = 6 for the Hosford yield function following the suggestion of Logan and Hosford
(1980) for b.c.c. metals. The uniaxial yield stresses and the values of R in the rolling and
transverse directions as well as the yield stress under equal biaxial tension from the simu-
lations are used to determine the constants in the Hill cubic yield criterion. The yield stresses
and the R values in the rolling direction, the transverse direction and the direction at 45°
from the rolling direction as well as the yield stress under equal biaxial tension conditions
from the simulations are used to determine the Y1d96 yield function of Barlat ez al. (1997b).

As shown in Fig. 16, near the uniaxial tension in the rolling and transverse directions,
the simulation results agree with the Hill quadratic and cubic yield criteria. In Region A
near equal biaxial loading, the simulation results agree with the Hill quadratic, Hill cubic
and Y1d96 vield criteria whereas in Region B near equal biaxial loading, the simulation
results agree with the Hosford yield criterion. The exponent of the YId96 yield criterion is
chosen as 4, instead of the value of 6, suggested by Logan and Hosford (1980) for b.c.c.
metals. In passing, the shear yield stresses o,, 0,. and o, are 293, 295 and 324 MPa,
respectively. These values can be used as references in general three-dimensional finite
element simulations of sheet forming processes when both the in-plane and out-of-plane
shear stresses are considered.

Figure 17 shows the results of the simulated yield surface based on the {111} pencil
glide system and definition II. The yield surfaces based on the above mentioned four yield
criteria are also shown. As shown in the figure, the simulation results agree with the
Hosford, Hill cubic and Y1d96 yield criteria in Region A, whereas the simulation results
agree with the Hill quadratic yield criterion in Region B.

The simulated yield surfaces based on definition I and II are redrawn in Fig. 18 for
comparison. The slopes of the yield surfaces for a given stress ratio based on definition I
and II are quite different near the rolling direction. This implies that there are potentially
large differences of the values of R based on these two definitions near the rolling direction.
Theoretically speaking, since the initial yield surface should be defined as the one when the
plastic dissipation approaches to zero for computational applications to determine the
initial small amount of plastic flow, the yield surface based on the offset plastic strain of
0.02% (definition I) is adopted for the rest of the paper.

A shear stress with respect to the rolling and transverse directions occurs when the
principal stress directions do not coincide with the symmetry axes of orthotropy. The
simulated yield surfaces for constant ratios of the shear stress to the yield stress in the
rolling direction, ¢,,6(=s), of 0.2, 0.3, and 0.4, projected on the in-plane normal stress
plane, are obtained and plotted in Fig. 19(a). Here & represents the effective tensile stress
defined previously. Figure 19(b) shows these stresses normalized by the yield stress in the
rolling direction. Figure 19(b) shows the similarities of the shapes of the yield surfaces for
various shear stress ratios. This indicates that phenomenological yield criteria may be used
to take account for the effects of in-plane shear stresses for b.c.c. sheet metals with the
{111} pencil glide system.

The normality of the yield surface at the given amount of plastic work is also checked
here. We define the angle « for the slope of the yield surface as
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Fig. 17. The results of the simulated yield surface based on the (111) pencil glide system and
definition 11 compared with those on the Hill quadratic and cubic yield criteria, the Hosford
yield criterion with m = 6, and the Y1d96 yield criterion with m = 4 for sheets after plane-strain
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d
_S0  ana @7
do,;
Also we define the plastic flow direction as
des,
= tan . (48)
def,

When the normality flow rule is justified as shown in Fig. 20, then

_ do,, = gﬁi, (49)
do,, de?,
or
a=p. (50)

The values of « and f, defined in Fig. 20 at various ratios of biaxial tension, are tabulated
in Table 2. Table 2 indicates that the direction of the increment of the plastic strain is
approximately perpendicular to the yield surface at the corresponding yield locus. The
normality flow rule is approximately satisfied at the given amount of plastic work based on
the polycrystal model.

Figures 21(a)—(c) show the normalized uniaxial yield stresses, the values of R, and the
normalized elastic moduli, respectively, for the sheet metal after plane-strain compression
with the compressive thickness strain of 0.79 at various in-plane orientations with respect
to the rolling direction based on definition I. In the figures, ® represents the angle between
the uniaxial tension directions and the rolling direction. The corresponding values based

02

On

Fig. 20. Representation of the tangent direction of the yield surface and the plastic flow direction.
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Table 2. The values of o« and B defined in eqns (50) and (51) at various stress ratios based on the {(111) pencil

glide system
G,/02 0.05 0.1 0.2 0.25 0.33 0.5 0.67 0.71 0.77
o (degree) 117.1 115.2 1129 1107 105.9 81.1 71.2 66.2 56.4
B (degree) 117.8 116.4 112.6 110.9 107.8 82.4 66.4 62.3 53.3
0,/65 0.83 091 1.0 1.1 1.2 1.3 1.4 1.5 2.0
o (degree) 41.9 344 28.7 25.7 17.9 13.2 9.7 5.8 4.8
B (degree) 39.7 31.1 24.5 19.7 13.0 9.6 6.9 4.9 2.6
0,/0; 3.0 4.0 5.0 10.0 20.0
o (degree) 10.0 17.2 21.8 244 26.2
B (degree) 9.4 14.1 16.8 21.5 229

on the Hill quadratic yield criterion and the Y1d96 yield criterion with m = 4 (Barlat, 1997¢)
are also plotted in Fig. 21(a) and (b). It should be noted that the yield stresses and the
values of R at various planar orientations based on the Hosford yield criterion and Hill
cubic yield criterion are not shown in Fig. 21(a) and (b) because these two yield criteria
require the principal stress directions to coincide with the orthotropic symmetry axes.

Figure 21(a) shows the normalized uniaxial yield stresses based on the simulations at
various planar orientations. These yield stresses have a maximum difference of 10%. The
yield stresses based on both the Hill quadratic yield criterion and the Y1d96 yield criterion
with m = 4 are in good agreement with those based on the simulations. Figure 21(b) shows
the values of R at various planar orientations. Note that the values of R based on the Hill
quadratic yield criterion are significantly different from those based on the simulations
whereas the values of R based on the Y1d96 yield criterion agree well with the simulation
results. Figure 21(c) shows the normalized elastic modulus as a function of the planar
orientation. Note that the trend of the normalized elastic moduli is similar to that of the
normalized yield stresses (as shown in Fig. 21(a)). There is a maximum difference of 15%
for the elastic moduli at various planar orientations as shown in the figure. It should be
noted that the elastic modulus is an important parameter to determine the springback in
sheet forming operations.

4.3.2. {110} (111} slip system Figure 22 shows the results of the simulated yield
surfaces based on the {110} (111 slip system and definition I for sheets subjected to in-
plane biaxial tension and shear after plane-strain compression with the compressive thick-
ness strain of 0.79. The results of the simulations with no shear give nearly flat contours in
Region A and B and a rounded vertex near equal biaxial tension direction in Region B.
Figure 22 also shows the results of the simulated vield surfaces for several ratios of the
shear stress to the yield stress in the rolling direction. In the figure, the rounded vertex
disappears gradually as s increases.

4.3.3. {112} (111 slip system Figure 23 shows the results of the simulated yield
surfaces based on the {112} {111} slip system and definition I for sheets subjected to in-
plane biaxial tension and shear after plane-strain compression with the compressive thick-
ness strain of 0.79. As shown in the figure, when the shear stress is zero, there are two
relatively inflated parts of the simulated yield surface in both Region A and B. Figure 23
also shows the results of the simulated yield surfaces for several ratios of the shear stress to
the yield stress in the rolling direction. In the figure, the shapes of the simulated yield
surfaces based on the {112} <111 slip system, contrary to those based on the {110} {111}
slip system, show a rounded vertex near equal biaxial tension direction as the shear stress
ratio s increases. As s decreases, the yield surfaces become close to each other in the equal
biaxial tension direction.

Finally, the simulated yield surfaces (without in-plane shear stresses) based on the
three slip systems are redrawn in Fig. 24. Note that the yield stresses are normalized
individually by the uniaxial yield stresses in the rolling direction based on the three slip
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Fig. 21. (a) The normalized uniaxial stresses, (b) the values of R and (c) the normalized elastic

moduli at various orientations with respect to the rolling direction obtained from the simulations

based on the (111) pencil glide system and definition I compared with those based on the Hill

quadratic yield criterion and the Y1d96 yield criterion with m = 4 for sheets after plane-strain
compression with the compressive thickness strain of 0.79.

systems. The three simulated yield surfaces show different shapes in the figure. As reported
in Viana et al. (1979), the simulated yield surfaces based on the {111 pencil glide system
show a smoother contour than those based on restricted slip systems.
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Fig. 22. The results of the simulated yield surfaces for the shear stress ratio {(g,,/ = ) of 0, 0.2, 0.3,
and 0.4 based on the {112} <111} slip system and definition I for sheets after plane-strain com-
pression with the compressive thickness strain of 0.79.
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5. CONCLUSIONS

The Taylor-like polycrystal model of Asaro and Needleman (1985) and some for-
mulations of Bronkhorst er al. (1992) are adopted here to investigate the plastic behavior
of a b.c.c. low-carbon steel under plane-strain compression and the subsequent in-plane
loading conditions. The {111 pencil glide system is considered as the main slip mechanism.
The {110} <111} and {112} <111} slip systems are also considered. Our computational
results indicate that the pole figures for the b.c.c. sieel after plane-strain compression are
not strongly dependent upon the slip system selected. Also the pole figures at large com-
pressive plastic strains agree with the corresponding experimental results. The yield surfaces
based on the (111 pencil glide system under biaxial stretching conditions from the simu-
lations depend upon the amount of plastic work. The yield stresses and the R values from
the simulations at various in-plane orientations can be fitted by a generalized yield function
of Barlat et al. (1997b) where the yield stresses and the R values in the rolling, transverse
and the 45° directions as well as the yield stress under equal biaxial tension are needed as
the input for determination of the yield function. Finally, the yield surfaces from the
simulations indicate that the yield surfaces strongly depend upon the slip system selected
in the simulations.
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